Advanced glycation end products and endothelial dysfunction in type 2 diabetes.

نویسندگان

  • Kathryn C B Tan
  • Wing-Sun Chow
  • Victor H G Ai
  • Christine Metz
  • Richard Bucala
  • Karen S L Lam
چکیده

OBJECTIVE Data from experimental studies have suggested that the increased formation of advanced glycation end products (AGEs) is one of the causes of endothelial dysfunction in diabetes. This study was performed to investigate whether changes in endothelium-dependent vasodilation, a marker of endothelial function, were related to serum AGEs concentrations in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS For this study, 170 patients with type 2 diabetes and 83 healthy nondiabetic control subjects of similar age were recruited. Serum AGEs were assayed by competitive enzyme-linked immunosorbent assay. Endothelium-dependent and -independent vasodilation of the brachial artery was measured by high-resolution vascular ultrasound. RESULTS Serum AGEs were increased in diabetic patients compared with control subjects (4.6 +/- 0.7 vs. 3.1 +/- 0.8 unit/ml; P < 0.01), and both endothelium-dependent (5.1 +/- 2.5 vs. 9.1 +/- 4.1%; P < 0.01) and endothelium-independent vasodilation (13.2 +/- 4.6 vs. 16.4 +/- 5.5%; P < 0.01) were impaired. On univariate analysis of all subjects, serum AGEs correlated with endothelium-dependent vasodilation (r = -0.51, P < 0.01); a weaker association was found with endothelium-independent vasodilation (r = -0.24, P < 0.01). On multiple regression analyses including age, sex, smoking status, and plasma lipids, only serum AGEs remained a significant independent determinant of endothelium-dependent vasodilation (r(2) = 0.34, P < 0.01). CONCLUSIONS Increased serum concentrations of AGEs in patients with type 2 diabetes is associated with endothelial dysfunction, independent of other cardiovascular risk factors. Further studies to determine whether treatment targeting AGEs will lead to an amelioration of endothelial dysfunction are warranted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Linalool on the Activity of Glyoxalase-I and Diverse Glycation Products in Rats with Type 2 Diabetes

Background and purpose: Hyperglycemia contributes to type 2 diabetes and diabetes vascular complications by reduction of the activity of glyoxalase-I (GLO-I) and elevation of glycation, oxidative stress, and inflammatory markers. Linalool is reported to have beneficial effects on glucose metabolism in animal models of diabetes, so, this study aimed at investigating the effect of linalool on the...

متن کامل

Receptor for advanced glycation end products involved in circulating endothelial cells release from human coronary endothelial cells induced by C-reactive protein

Objective(s): This study was designed to investigate the effect of receptor for advanced glycation end products (RAGE), S100A12 and C-reactive protein (CRP) on the release of circulating endothelial cells (CECs) from human coronary artery endothelial cells (HCAECs). Materials and Methods: HCAECs were cultured in increasing concentration of CRP (0, 12.5, 25, 50μg/ml) or S100A12 protein (0, 4, 1...

متن کامل

Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes.

OBJECTIVE Diabetes is characterized by marked postprandial endothelial dysfunction induced by hyperglycemia, hypertriglyceridemia, advanced glycation end products (AGEs), and dicarbonyls (e.g., methylglyoxal [MG]). In vitro hyperglycemia-induced MG formation and endothelial dysfunction could be blocked by benfotiamine, but in vivo effects of benfotiamine on postprandial endothelial dysfunction ...

متن کامل

Pheophorbide a from Capsosiphon fulvescens Inhibits Advanced Glycation End Products Mediated Endothelial Dysfunction.

During hyperglycemia, the first step toward the formation of advanced glycation end products is the nonenzymatic glycation between the carbonyl group of a sugar and the primary amino group of a protein. Advanced glycation end products are then produced through more complex reactions. Reactive oxygen species derived from advanced glycation end products may play a key role in inflammation of the ...

متن کامل

Thiazolidinediones reduce endothelial expression of receptors for advanced glycation end products.

Advanced glycation end products (AGEs) are critically involved in atherogenesis in diabetes by binding to receptors for AGE (RAGEs) in vascular cells, thus inducing the expression of proinflammatory mediators. In animal models, interruption of the AGE-RAGE interaction reduces lesion size and plaque development. Therefore, limiting RAGE expression might be an intriguing concept to modulate vascu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes care

دوره 25 6  شماره 

صفحات  -

تاریخ انتشار 2002